AQUARIUS - Air QUAlity Research In the western US

Chris Cappa UC Davis

AQUARIUS Workshop 25 September 2019

Photo: Erik Crosman

1

 Kathmandu Valley

Central Valley, CA

Salt Lake Valley, UT

Po Valley, Italy

Denver, CO

Los Angeles, CA

Wintertime PM_{2.5}

Wintertime PM_{2.5}

Coupling between meteorology and wintertime PM

ENGINEERING

IENTAL

6

Evolution of the vertical structure of the atmosphere

Prabhakar et al. (2017); San Joaquin Valley - Fresno

7

Science Question: How do meteorological "cold-air pool" conditions contribute to poor wintertime basin air quality, and how can meteorological observations and modeling efforts be designed to most effectively inform emissions and chemistry research?

PM_{2.5} Composition

10

OA, NO₃⁻, SO₄²⁻, NH₄⁺, Cl⁻

Particle Composition: Relationship with total PM

Based on Franchin et al. (2018); Utah

Young et al. (2016); San Joaquin Valley

Spatial Distribution

- Homogeneous?
- Cities versus rural?
- Altitude?

27 Stritude

34

-123

-122

Nitrate gas-particle partitioning

Vertical structure: Chemistry + Meteorology Coupling

Diel Variability and Process Understanding

Young et al. (2016): San Joaquin Valley

Science Question: What are the relevant physical (including meteorological), chemical and thermodynamic processes that govern winter particulate matter formation and loss, what are the uncertainties, and how can these be addressed through measurements and modeling?

Sources of PM Pollution

vs.

Science Question: What are the relevant emissions of short-lived pollutants that are most relevant to winter air quality in the western U.S. and what are the major uncertainties in quantifying them? What approaches are required to reduce these uncertainties?

Particulate Nitrate Formation

Daytime

 $O_3 + hv \rightarrow O(^1D) + O_2$ $H_2O + O(^1D) \rightarrow 2 OH$ $HONO + hv \rightarrow OH + NO$ $CH_2O + hv \rightarrow OH + CH$ $OH + NO_2 \rightarrow HNO_3$ NH₃ AN

Nighttime

 $O_3 + NO_2 \rightarrow NO_3 + O_2$ $NO_3 + NO_2 \leftrightarrow N_2O_5$ $NO_3 + VOC \rightarrow products$ N_2O_5 + particles_(aq) \rightarrow 2 HNO₃ \rightarrow HNO₃ + CINO₂ \mathbf{NH}_{2} AN

VIRONMENTAL

ENGINEERING

CIVIL AND ENVIRONMENTAL

ENGINEERING

McDuffie et al. (2019)

Chemistry + Meteorology Coupling

Implications for Control Strategies

25

Secondary Organic Aerosol

Local vs. Regional

Daytime vs. Nighttime

Dry vs. Wet (fog/clouds/aerosol)

Source of VOC's?

Young et al. (2016); Fresno

Science Question: How do winter oxidation cycles impact winter air quality, and how should these oxidation cycles be approached from a measurement and modeling standpoint ?

Science Question: How are urban GHG emissions changing in the western U.S., which sectors are responsible for the changes, and how are shifts in GHG emissions associated with changes in short-lived pollutants?

Science Questions Summary

- 1. Meteorology-Chemistry Coupling and PCAPS
- 2. Physical, chemical and thermodynamic processes that govern PM formation and loss
- 3. Emissions of short-lived pollutants
- 4. Air pollution—Climate co-benefits
- 5. Winter oxidation cycles

Acknowledgements

The AQUARIUS Organizing Committee

UCDAVIS

https://atmos.utah.edu/aquarius/index.php

contact: cdcappa@ucdavis.edu

Support from the National Science Foundation (NSF) and NOAA

