

Turbulent Fluxes and Air Pollution in Cold Air Pool Events (Meteorology-Chemistry Coupling)

Heather Holmes, Xia Sun Atmospheric Sciences Program, University of Nevada, Reno

26 September 2019 AQUARIUS (Air Quality in the Western US) Workshop Salt Lake City, UT, USA

www.unr.edu/~hholmes

Key Unanswered Questions

- What role does the boundary layer structure have on PM formation and the chemical processes?
- What role do stratiform clouds have on the atmospheric chemistry and boundary layer mixing?
- Can NWP models simulate near-surface
 meteorological conditions during stable PBL?
- Is it time to move on from existing dimensionless fluxgradient parameterizations to simulate the PBL mixing?
- Do we have enough turbulence data to make new empirical formulations for the RANS closure?

No!

No!

Persistent Cold-Air Pool Study

THE PERSISTENT COLD-AIR POOL STUDY

by Neil P. Lareau, Erik Crosman, C. David Whiteman, John D. Horel, Sebastian W. Hoch, William O. J. Brown, and Thomas W. Horst PCAPS field campaign (NSF: 0938397) C. David Whiteman (U. of Utah) John Horel (U. of Utah) Sharon Zhong (Michigan State)

Utah's Salt Lake valley was the setting for a wintertime study of multiday cold-air pools that affect air quality in urban basins.

- Field Experiment
- Wintertime
- 2 ¹⁄₂ Months
- Salt Lake Valley, Utah
- Multiple Upper Air and Surface Sites

(Figures from: Lareau et al., BAMS 2013)

PCAPS Study Time Period: Winter 2010-2011

- 10 Intensive Observation Periods (IOPs)
- Brief and weak CAPs throughout Weak CAPs
- 4 IOPs with Strong Multiday Persistent CAPs
- NWP Modeling IOP3 & IOP5
- Air Quality Modeling January 2011 (IOP5 IOP9)

12

Heat Deficit (MJ m^{-2}

Monitoring Locations: Turbulence Data

NCAR EOL Integrated Surface Flux System (ISFS) Observation period: Dec 2010 – Feb 2011 Sensor height:

3m or 10m

No.	Site	Sensor Height (m)	Land Use (National Land Cover Database, NLCD)
1	Playa	3	Barren land
2	ABC Urban	10	Developed, high intensity
3	Highland	10	Developed, medium intensity
4	West Valley	10	Developed, low intensity
5	East Slope	10	Developed, low intensity
6	West Slope	3	Pasture/Hay
7	Riverton	10	Cultivated Crops

Numerical Weather Prediction Model

Weather Research & Forecasting (WRF) v3.7.1

Configurations

- NAM 12-km analysis dataset
- 3 Two-Way Nested Domains (finest: 480m)
- 30 Vertical Levels (10 in first 1,000m AGL)
- Surface and Upper Air Nudging (OBSGRID)
- NLCD Land Use Classification

Common Physics

- Cloud Microphysics: Lin
- Longwave Radiation: Rapid Radiative Transfer Model
- Shortwave Radiation: Dudhia
- Cumulus Parameterizations: Kain-Fritsch
- Cloud Fraction Option: Xu-Randall

Planetary Boundary Layer, Surface Layer, Land Surface 1. ACM2, Pleim-Xiu, Pleim-Xiu (with soil nudging) [A(

- 2. YSU, Revised MM5, Noah
- 3. MYJ, Eta Similarity, Noah
- 4. MYNN, MYNN, Noah

[ACM2] [YSU] [MYJ] [MYNN]

Simulated Net Radiation and Friction Velocity (Strong CAP – IOP5)

Net Radiation (W/m²)

Friction Velocity (m/s)

Sun et al., (in prep)

Simulated Surface Fluxes (Strong CAP - IOP5)

Sensible HF (W/m²)

Latent HF (W/m²)

Sun et al., (in prep)

Spatial Variability of Surface Fluxes

Spatial Variation of Surface Transfer Coefficient

Sensible Heat Flux Calculation

$$H = \rho c_p C_h U_a (T_s - T_a)$$

Where:

 ρ = density

- c_p = specific heat capacity
- C_h = surface transfer coefficient
- U = wind speed
- T = temperature
- s = surface
- a = 2m above surface

Average WRF Simulated Surface Transfer Coefficient

WRF Surface Transfer Coefficient and Stability

Sun et al., (in prep)

Flux-profile Stability Functions

Dimensionless Wind Shear

$$\phi_M(\zeta) = \frac{\kappa z}{u_*} \frac{\partial U}{\partial z}$$

Dimensionless Temp Gradient

$$\phi_T(\zeta) = \frac{\kappa z}{\theta_*} \frac{\partial \theta}{\partial z}$$

00

(Sun et al. 2019, in prep)

Summary

- In general, WRF performance depends on CAP strength and degrades for strong CAPs
- Surface exchange coefficient is typically overestimated by WRF
- Further investigation of flux-gradient relationship in complex terrain needed to improve surface layer model parameterizations
- Can NWP models simulate near-surface meteorological No! conditions during stable PBL?
- Is it time to move on from existing dimensionless fluxgradient parameterizations to simulate the PBL mixing?
- Do we have enough turbulence data to make new empirical formulations for the RANS closure?

Yes!

No!

Field Experiment Wish List

- Surface energy balance; SHF, LHF, u_{*} @ many locations
- Surface skin temperature and moisture @ many locations
- Vertical profiles of SHF, LHF, and TKE
- Vertical profiles of aerosols and nitrogen chemistry
- Cloud thermodynamics and mixing (entrainment)