Modeling NH_4NO_3 during the 2013 SJV DISCOVER-AQ Campaign: Lessons Learned for AQUARIUS

James T. Kelly

U.S. Environmental Protection Agency

AQUARIUS Workshop, September 25-26 2019, Salt Lake City, Utah

Contributors: Jeremy Avise, James Chen, Ajith Kaduwela, C. L. Parworth, Q. Zhang, D. J. Miller, K. Sun, M. A. Zondlo, K. R. Baker, A. Wisthaler, J. B. Nowak, S. E. Pusede, R. C. Cohen, A. J. Weinheimer, A. J. Beyersdorf, G. S. Tonnesen, J. O. Bash, L. C. Valin, J. H. Crawford, A. Fried, and J. G. Walega

Particulate Matter in SJV

2017 State of the Air Report, American Lung Association	
Short-Term PM _{2.5} (24-hour)	Long-Term PM _{2.5} (Annual)
Rank [*] Metropolitan Statistical Area	Rank [*] Metropolitan Statistical Area
1 Bakersfield, CA	1 Visalia-Porterville-Hanford, CA
2 Visalia-Porterville-Hanford, CA	2 Bakersfield, CA
3 Fresno-Madera, CA	3 Fresno-Madera, CA
4 Modesto-Merced, CA	4 San Jose-San Francisco-Oakland, CA
	5 Los Angeles-Long Beach, CA
*Blue: SJV	6 Modesto-Merced, CA
http://www.lung.org/assets/documents/healthy-air/state-of-the-air/state-of-the-air-2017.pdf	

- SJV experiences high PM_{2.5} during stagnant, cool, and humid meteorological conditions that occur episodically during winter
- NH₄NO₃ makes up about 50% of PM_{2.5} during major wintertime PM_{2.5} episodes

^{17/}presentation.pdf

Overview

- Due to the high concentrations of PM_{2.5}, understanding NH₄NO₃ formation in SJV is important for NAAQS implementation, risk assessments, and cost-benefit analysis
- The NASA DISCOVER-AQ^{*} field campaign in January and February 2013 provides a rich dataset for characterizing NH₄NO₃ during wintertime PM_{2.5} episodes in SJV
- Air quality modeling (CMAQv5.1) was conducted for the DISCOVER-AQ campaign and used in combination with the field measurements to investigate NH₄NO₃ formation in SJV (Kelly et al., 2018)^{**}
- Here, we summarize results for the SJV DISCOVER-AQ modeling study that may provide insights to inform planning for the AQUARIUS campaign

*DISCOVER-AQ: <u>Deriving Information on Surface Conditions from CO</u>lumn and <u>VER</u>tically Resolved Observations Relevant to <u>Air Quality https://www-air.larc.nasa.gov/missions/discover-aq/discover-aq.html</u>

**Kelly et al. (2018) Modeling NH₄NO₃ over the San Joaquin Valley during the 2013 DISCOVER-AQ campaign. Journal of Geophysical Research: Atmospheres, 123, 4727–4745. <u>https://doi.org/10.1029/2018JD028290</u>

Conceptual Model for NH₄NO₃ Episode: Nighttime

- The conceptual model of nighttime nitrate formation is based on the 2000/2001California Regional PM_{2.5}/PM₁₀ Air Quality Study (CRPAQS)*
- Roughly half of nitrate production in SJV is estimated to be from the nighttime pathway in a wellmixed residual layer
- Do aspects of the conceptual model need to be refined (e.g., valley-wide mixing, soil NOx, effects of drought and NOx reductions)?

*Herner, Kleeman et al. (2005 JAWMA, 2006 AS&T); Watson and Chow (2002) Atmos. Environ.

Daily Average Nitrate in SJV

EPA

CARB

Observed

Overall, existing inventories and models capture daily average nitrate at monitoring sites reasonably well

Better model-obs agreement in the north (e.g., Modesto) than the south (e.g., Bakersfield), near convergence of mountain ranges

How do meteorological conditions vary within SJV (e.g. from north to south) and influence the distribution of nitrate throughout the valley?

Hourly Nitrate in Fresno

- The model captures observed nitrate episodes reasonably well in late January
- The peak in modeled nitrate on 22 January is due to transport of nitrate from the south, but observation-based studies suggest that elevated nitrate in Fresno is due to mixing of nitrate formed aloft to the surface in the morning
- An improved understanding of the influence of rural-urban transport of nitrate (and other pollutants) would be valuable

PILS measurements: Caroline Parworth, Qi Zhang (UC-Davis)

HNO₃ Production in SJV: 17-22 January

Spatially Integrated HNO₃ Production

- The daytime HNO₃ production pathway contributes about 46% to total production and the nighttime pathway 54%
- The daytime pathway is projected to become more important as NOx concentrations decrease
- New measurements (e.g, NO₂, O₃, NO₃, N₂O₅) in the nighttime residual layer are needed to constrain spatial patterns and magnitudes of nitrate production (no nighttime flights during D-AQ)

Oxidation in SJV

- Uncertainty in the NOx/NOy ratio due to uncertainty in the fraction of particle nitrate sampled by the instrument hampered our evaluation of modeled NOx oxidation
- HCHO and O₃ are underestimated by the model (appendix)
- Measurements/analyses are needed to better constrain NOy speciation, oxidant abundance (local O_x production and transported O₃), and radical budgets

Relative Response of NH₄NO₃ to Precursor Reductions

- Sensitivity simulations were performed with reductions in NOx, NH₃, and VOC emissions
- NH₄NO₃ concentrations are most responsive to NOx emissions in the model
- Additional characterization of precursor levels, oxidant abundance, and radical budgets would be valuable for interpreting results on NH₄NO₃ responsiveness to emissions

Inorganic Aerosol Partitioning at Fresno

- Most of NHx is in the gas phase and most of TNO3 is in the particle phase in the model and ambient suggesting that HNO₃ is the limiting NH₄NO₃ precursor
- However, partitioning of TNO3 to the gas phase is overestimated at high temperature and low relative humidity conditions in afternoon

Ground sites with comprehensive datasets for thermodynamic and other analyses are important complements to "snapshots" provided by flights

Summary of Future Needs for NH₄NO₃ in SJV

- Measurements of spatial patterns of species concentrations relevant to nitrate production in the nighttime residual layer (e.g., NO₂, O₃, NO₃, N₂O₅)
- Characterization of chemical indicators, oxidant abundance (local O_x production and transported O_3), and radical budgets to inform model evaluation and understanding of nitrate response to precursor reductions
- Characterization of variations in meteorology throughout the basin (e.g., north-to-south) and within-basin transport of nitrate and other pollutants
- Continuous comprehensive ground measurements to complement "snapshots" from flights
- Synthesis of new information to refine, if necessary, the conceptual model of winter nitrate formation in SJV

Disclaimer

• The views in this presentation are those of the authors alone and do not necessarily reflect the policy of the U.S. Environmental Protection Agency.

Additional Slides

Methods

- Air Quality Modeling: Community Multiscale Air Quality (CMAQ) model version 5.1 (4-km resolution, 10 January – 15 February 2013)
- Measurements: NASA P-3B aircraft, Fresno ground site, and Princeton mobile laboratory

CMAQ Domain

Fresno Site (Qi Zhang)

https://climate.nasa.gov/news/870/campaign-todiagnose-air-quality-concludes-in-california/

na be ra de la de

NASA P-3B Aircraft

Princeton Mobile Lab (Mark Zondlo)

Hourly Distributions of Modeled and Measured NO₃⁻

- Modeled NO₃⁻ concentrations decrease during afternoon (possibly due to gas-particle partitioning issues) whereas observations are relatively flat
- The measured NO₃⁻ increase in the morning (due to mixing of residual layer to the surface) is underestimated by the model, possibly due to issues with meteorological factors and/or vertical distributions of HNO₃ production

Gas-Particle Partitioning and pH_F at Fresno, SJV

- Estimated median pH_F is 4.0 based on observations and 3.7 based on modeling
- Total nitrate partitioning is not very sensitive to pH_F (i.e., data are at the top of the S-curve)

HCHO Along Aircraft Spirals

Ozone Along Aircraft Spirals

NOx and NOx/NOy Along Aircraft Spirals

19

Spatial Evaluation of Ammonia Predictions: Model vs. Princeton Mobile Lab Measurements

Spatial Evaluation of Ammonia Predictions: Model vs. NASA P-3B Measurements

- The model generally predicts elevated NH₃ in the region with high measured NH₃, but predicted mixing ratios are too low
- Predictions are especially low near Hanford, which is just outside of the major emission region in Tulare County in the model (above, right)
- NH₃ measurements: Armin Wisthaler (University of Innsbruck) •
- Note: nitrate is not very sensitive to NH_3 in the model (HNO₃-limited formation)

P-3B Spiral Locations and PBL Height Estimates

 Daytime PBL heights may be slightly biased low during daytime (consistent with HSRL evaluation)

Observation-based PBL Heights from Jim Crawford (NASA)