

RECENT FIELD CAMPAIGNS IN CHINA

AQUARIUS Workshop

2. OKTOBER 2019 | HENDRIK FUCHS

シーンジェンジョンジェンジョン

PEKING UNIVERSITY

Mitglied der Helmholtz-Gemeinschaft

PHOTOCHEMISTY FIELD CAMPAIGNS IN CHINA

Goals:

- Understanding oxidation processes of pollutants and quantification of oxidation rates
- Understanding and quantification of ozone production

Seite 2

Huairou Winter 2016

INSTRUMENTATION FOR INVESTIGATING RADICAL BUDGETS

- Trace gas compounds:
 - NO, NO₂ (chemilumescence), O₃ (UV photometer)
 - HONO (long-path absorption, LOPAP)
 - Radicals (OH,HO₂,RO₂: laser-induced fluorescence)
 - Volatile organic compounds (gas-chromatography)
 - HCHO (Hantzsch-monitor)
 - OH reactivity (=inverse lifetime of OH, Laser flash photolysis + LIF)

MODEL-MEASUREMENT COMPARISON

<u>Model:</u>

- RACM with updated isoprene mechanism
- Constraints: T, p, j, NOx, O₃, HONO, VOC
- →Observed OH higher than model predictions with decreasing NO (NO<200pptv)</p>
- →Observed HO₂ / RO₂ higher than model predictions with increasing NO (NO>1ppbv)

OZONE PRODUCTION RATES NORTH CHINA PLAIN

Wangdu 2014 summer

 HO_2 / RO_2 concentrations higher than modelled concentrations

 \rightarrow Higher local ozone production rates than chemical models suggest

 $HO_2/10^8 cm^{-3}$

 $\mathrm{RO}_2/10^8\mathrm{cm}^{-3}$

h/qdd / (°O)A

10.0

0.1

FÖ-

0.1

10

15

1.0

NO / ppbv

PEARL RIVER DELTA FALL 2014: MISSING OH REACTIVITY

Using the measured OH reactivity (w/o CO, NOx) $\rightarrow k_{OH}(VOC) \times [OH]$

- 50% of OH reactivity unexplained
- Missing OH reactivity due to unmeasured VOCs

PEARL RIVER DELTA FALL 2014: MISSING OH SOURCE

- Missing OH source (4-6 ppb/h) in the afternoon
- Missing RO_2 sink (2-5 ppb/h) in the afternoon
- HO₂ and total ROx budgets are closed
- →Hypothesis: RO₂ regenerates OH without oxidation of NO
- \rightarrow No ozone production from this process

PEARL RIVER DELTA FALL 2014: OZONE PRODUCTION

Integrated daily O₃ production (112ppbv):

- 14% from HCHO + OH/hv
- 8% from CO + OH
- 18% from measured VOCs
- 60% from unknown VOCs

If hypothesis of $RO_2 \rightarrow OH$ is correct $\rightarrow 25\% RO_2$ does not contribute to O_3 formation

OZONE AND PM2.5 TRENDS IN THE NORTH CHINA PLAIN

2. Oktober 2019

Seite 10

NCP SUMMER 2014: POTENTIAL IMPACT HO₂ UPTAKE

- HO₂ uptake on aerosol typically only important for liquid aerosol and catalyzed by transition metal ions
- Global models suggest that cleaning of air in China reduced HO₂ aerosol loss between in recent years
 - →Increase in peroxy radical concentrations
 - → Potential reason for observed increase in ozone pollution

NCP SUMMER 2014: POTENTIAL IMPACT HO₂ UPTAKE

ROx budget is closed

- →Additional radical loss are not required to explain observed radical concentrations
- \rightarrow HO₂ uptake does likely not explain ozone increase observed in China

SUMMARY OPEN QUESTIONS

- Which radical precursors contribute to radical production?
- How much do unmeasured organic compounds contribute to oxidation processes and which compounds are these?
- What is the imortance of RO₂ → OH conversion that does not lead to ozone production and what are the organic species behind?
- Could HO₂ uptake be of importantance for radical loss / ozone production?

One way to address these questions:

- Experimental determination of radical budgets (OH, HO₂, RO₂, ROx)
- Quantification of unmeasured OH reactants (OH reactivity combined with speciated OH reactants using GC / mass spectrometer instrumentation)

LASER-INDUCED FLUORESCENCE OH DETECTION

- Gas expansion into low pressure cell
- Excitation of OH at 308nm
- Fluorescence detection at 308nm

OH DETECTION BY LASER-INDUCED FLUORESCENCE

Signal on the detector: $S(\lambda) = S_{Bkg} + S_{Flu}(\lambda)$

→Wavelength scan

→Internally produced OH is detected as ambient OH

Chemical modulation scheme (Mao et al., 2012)

- →Ambient OH scavenged by propane
- →Residual signal is internally produced OH

CHEMICAL TITRATION APPLIED IN FIELD CAMPAIGNS

North China Plain winter 2016

- Daylong comparison with improved automated system
- \rightarrow No significant interference detected

Seite 17

Tan et al., ACPD 2018

