

Persistent winter nitrate pollution driven by increased oxidants in northern China

Tao Wang¹, Xiao Fu¹, Jian Gao² ¹ Department of Civil and Environmental Engineering The Hong Kong Polytechnic University ² Chinese Research Academy of Environmental Sciences

Workshop on Air quality in western US Salt Lake City, 25-26 September 2019

Acknowledgement

- National Natural Science Foundation of China (91544213)
- Hong Kong Research Grant Council (ANR-RGC Joint research and Theme-based research T24-504/17-N)

- Winer haze in the North China Plain (NCP)
- Nitrate observations in Dec 2017 in NCP
- Key factors controlling nitrate formation and trend (by model)

The North China Plain (NCP)

NOx emission

~0.3 million km² and ~1/5 Chinese population

Home to Beijing, Tianjin, Shandong, and part of Hebei, Henan, Jiangsu and Anhui

Severe winter haze in NCP

The "Bird Nest" Stadium in Beijing

(Photo by Xinhua News Agency on 7 Dec 2015)

SO₂ & NO_x emissions decreased, so did ambient PM_{2.5} conc.

China emission changes (2010-2017)

But no obvious decline in fine nitrate in NCP

The trends were composed using the results from Zhao et al., 2019; Meng, 2015; Ma, 2017; Wang et al., 2019; Jia et al., 2018; Zhang et al., 2017; Jia et al., 2018; Wen et al., 2016; Han et al., 2015; Shao et al., 2018.

Nitrate formation pathways

Three key processes: HNO_3 production by $OH+NO_2$ and N_2O_5 hydrolysis followed by reaction with NH_3 **Three key ingredients**: NO_x , oxidants, & NH_3

Evidence of active winter photochemistry

Peak concentrations of HONO, PAN, and OH observed during wintertime in the NCP

Regional observations of PM2.5 in Dec 2017

PM2.5 composition vs loading

Salt Lake Valley (Jan-Feb 2009) Nitrate: Max=50 ug·m^{-3,} PM2.5 max ~100 ug·m-3 Nitrate percentage: mean=40%, max=69% (Kuprov et al., 2014)

Model simulations of winter nitrate in Dec 2017

• Model simulation

- CMAQ5.1 / WRF4.0
- Domain: 36km, 12km
- Period: 1-31 Dec. 2017

- CMAQ: SAPRC07tic + AERO6i
 - WRF: Pleim-Xiu + ACM2 + RRTMG The first guess fields: ds083.2 from NCEP Grid nudging: ds351.0 and ds461.0
- Emission: Tsinghua + MEGAN

Improving the model on reactive nitrogen chem.

HONO sources (Fu et al., 2019)

 $k_4/k_{2b} = 2.9 \pm 1.2$

Location	Obs. period	Obs. average	Sim. average	Reference			$\gamma(N_2O_5)$
ICCAS_Beijing	2014.12	1.34	2.40	Tong et al. (2016)	-		
CEE_Beijing	2016.01	1.05	2.40	Wang et al. (2017)		"Observed"	0.024 ± 0.023
EPA_Beijing	2015.02-03	1.99	2.40	Zhang et al. (2018)		B&T para	0.046 ± 0.015
Jinan_Shandong	2016.12- 2017.02	1.75	1.92	Li et al. (2018)		Deer puru.	0.010±0.015
Wangdu_Hebei	2017.12	2.27	0.81	unpublished data		Modified	0.023 ± 0.020

 $k_4/k_{2b} = 29 \pm 6$

Improved simulations of NO₂ and nitrate in NCP

		OBS (µg m ⁻³)	SIM (μg m ⁻³)	Bias (µg m ⁻³)	NMB (%)	NME (%)	R
NO ₃ -	CAMQ default (BT09)	20.04	24.86	3.92	18.72	47.80	0.75
	CAMQ revised (Fitted)	20.94	20.98	0.04	0.19	41.70	0.75
NO ₂	CAMQ default (BT09)	52.00	45.71	-6.38	-12.25	41.87	0.56
	CAMQ revised (Fitted)	52.09	47.89	-4.20	-8.06	41.33	0.58

NCP is a NH₃-rich environment in winter

$$GR = \frac{\left(\left[NH_3\right] + \left[NH_4^+\right]\right) - 2 \times \left[SO_4^{2-}\right]}{\left[NO_3^-\right] + \left[HNO_3\right]}$$

GR>1 indicates NH₃-rich conditions 0<GR<1 indicates NH₃-neutral conditions GR<0 indicates NH₃-poor conditions

HNO₃ sources and sinks (region average)

Physical & chemical processes

Downward contribution to surface nitrate

Comparable gas-phase and het. reaction, higher $OH+NO_2$ at surface

Increased production of oxidants and HNO₃ in heavy pollution

Due to increase in HONO, OVOCs, NOx, RH, despite ~30% reduction in sunlight

Why no improvement of nitrate from 2010 to 2017?

Emission changes from 2010 to 2017 in the NCP: SO₂ (-59.7%), NO_X (-31.8%), PM_{2.5} (-38.6%), VOC (4%), NH₃ (0.2%)

Conclusion

- Winter photochemistry in NCP is active enough to drive the formation of nitrate, due to high conc. of oxidant precursors (e.g. HONO, VOC).
- The emission control measures (targeting PM) in the past decade increased O_3 and OH, which offset the effectiveness of NO_X emissions reduction.
- Future strategies should also reduce the oxidants, via larger NO_X and VOC emissions reduction. (-20% VOC, -8% nitrate)

Suggestions for AQURIUS

- Spatial variations of PM composition in the western basins
 - Integrate continuous (long-term) and intensive measurements
- Drivers of the observed high nitrate
 - Measure key oxidants and precursors (especially HONO)
 - Quantify the role of dynamic transport
- Air quality models better represent HONO and N₂O₅ processes
 - Incorporate observation-based findings to CTMs

View of Mt Tai in NCP

Thank you!

Photochemical air pollution in highly urbanized subtropical regions - from micro environ. to urban-terrestrial-oceanic interactions

PC: Tao WANG

<u>Co-PIs</u>: T Wang, G. Brasseur, S.C. Lee, H Guo, K.F. Ho, P. Louie, XM. Wang, Z. Wang

A newly funded Theme-based project of HK Research Grants Council (2018-2022, HK\$33.33M, ~US\$4.3 M)

Oxidant sources and sinks (region average)

Horizontal Transport
Vertical Transport
Dry Deposition
Gas chemistry
Coud process

Layer 1=34 m, layer 5 = 322 m, layer 10=1184 m

Production rates within 10 layers

Changes under different nitrate pollution levels

Changes due to emission control from 2010 to 2017

NCP is under VOC-limited in winter

